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Abstract—This report presents a CNN-RNN based model
for acoustic scene classification (ASC) under spatial-temporal
variability, which is the APSIPA ASC 2025 Grand Challenge. The
proposed architecture, referred to as MobileASCNet, combines
depthwise separable convolutions and ResNet-inspired modules
to extract efficient spatial and residual features, and employs a
GRU-based recurrent branch to model temporal dependencies.
After city and time feature fusion, a multi-layer perceptron
(MLP) along with additional residual blocks is used to further en-
hance classification performance. Unlike many recent approaches,
our model is trained from scratch without using pretraining or
knowledge distillation. Experimental results on the development
set demonstrate the effectiveness of our approach, achieving
a classification accuracy of 99.0%, outperforming the official
baseline model (96.0%) with lower model complexity.

I. INTRODUCTION

Acoustic Scene Classification (ASC) aims to recognize the
type of environment in which an audio signal was recorded,
such as a street, shopping mall, or metro station, based on its
acoustic characteristics [1], [2]. ASC has been one of the core
tasks in the Detection and Classification of Acoustic Scenes
and Events (DCASE) challenges for nearly a decade [3],
[4], and has attracted extensive research interest due to its
applications in context-aware services, intelligent devices, and
urban monitoring [5]. Recent advances in deep learning have
significantly improved ASC accuracy on benchmark datasets,
driven by powerful Convolutional Neural Networks (CNNs)
[6]. However, the high computational complexity and memory
requirements of such models hinder their deployment on
resource-constrained platforms like smartphones, wearables, or
embedded audio sensors. Moreover, ASC systems often suffer
from performance degradation when evaluated on audio cap-
tured by previously unseen devices or recording conditions [7],
[8], highlighting a need for models that are both efficient and
robust to domain shift.

To address these issues, recent effort have investigated the
development of compact neural network architectures [9] and
efficient training paradigms, including knowledge distillation
and model ensembling [10], [11]. These strategies aim to
reduce model complexity while maintaining or improving
generalization capability. In the ASC domain, low-complexity
models like CP-Mobile [9] have demonstrated competitive
accuracy with a fraction of the parameters of large networks.

Our previous work contributes to this line of research by
proposing a dual-level knowledge distillation framework that
incorporates both output-level supervision and intermediate
feature alignment to guide the training of low-complexity
student models [12]. Similar approaches have been explored
in DCASE challenges, where ensemble teacher models such
as PaSST [6] and CP-ResNet [13], together with lightweight
architectures implemented without distillation, exemplified by
our Convolutional Neural Networks-Gated Recurrent Unit
(CNN–GRU) based system for DCASE2025 Task 1 [14], have
been employed to meet strict complexity constraints while
maintaining competitive accuracy.

Extending beyond these approaches, the APSIPA ASC 2025
Grand Challenge building upon the IEEE ICME 2024 Grand
Challenge [15], which focused on domain shift across cities
and time, introduces a more contextually rich and realistic
evaluation setting [16]. In this benchmark, each 10-second
audio segment is annotated with both city-level location and
timestamp metadata, encompassing 22 cities across China and
spanning various time periods. The challenge adopts a semi-
supervised learning protocol in which only a small portion of
the development data is labeled, while the remainder remains
unlabeled. This formulation imposes additional challenges by
requiring systems to address label scarcity, spatial-temporal
variability, and domain shifts simultaneously. Consequently, it
encourages the development of models that are not only com-
putationally efficient but also capable of leveraging contextual
information and unlabeled data to improve robustness in real-
world scenarios.

In this paper, we build upon these findings and shift our
focus from knowledge transfer to architectural design. Specif-
ically, to align with the challenge’s objective of leveraging
contextual metadata, we incorporate both city-level location
and timestamp information during training. Within the semi-
supervised learning framework, our method effectively utilizes
both labeled and pseudo-labeled data to enhance model robust-
ness across different cities and temporal contexts. We refer to
this architecture as MobileASCNet, which emphasizes both
its suitability for low-complexity deployment and its ability
to incorporate spatial-temporal metadata for acoustic scene
classification.
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Fig. 1. Overview of the proposed MobileASCNet architecture.

II. DATA PREPROCESSING AND FEATURE EXTRACTION

In this work, we adopt the same data preprocessing and
feature extraction pipeline as the official APSIPA ASC 2025
Challenge baseline. The raw audio recordings are first con-
verted into log-mel spectrogram representations, which are
widely used in acoustic scene classification tasks due to their
compactness and perceptual relevance.

Specifically, we apply short-time Fourier transform (STFT)
to each audio waveform using a Hann window. The magnitude
spectrogram is then projected onto the mel scale using a mel
filter bank with 64 mel bands. Finally, logarithmic compression
is applied to obtain the log-mel spectrogram. The detailed
parameters used in the extraction are as shown in Table I.

TABLE I
PARAMETERS FOR LOG-MEL SPECTROGRAM

EXTRACTION.

Parameter Value

Sampling rate 44,100 Hz
FFT size (nfft) 2,048
Window length (winlength) 1,764
Hop length (hoplength) 882
Number of mel bands 64
Frequency range 50 Hz – 22,050 Hz
Window type Hann

The configuration follows the official ASC Challenge base-
line settings to ensure comparability and reproducibility. The
resulting log-mel spectrograms are used as input to our model
MobileASCNet described in the Section III.

III. PROPOSED MODEL ARCHITECTURE

A. Model Architecture

As illustrated in Figure 1, the network consists of three main
components:

• Residual Depthwise Separable Convolutional Block:
The input log-mel spectrogram is first passed through a
series of three residual depthwise separable convolutional

blocks (ResDepthwise Separable Conv Block)as illus-
trated by the blue components in Figure 1. This design
enables efficient extraction of local spatial features while
maintaining strong representational capacity.

• Temporal Modeling: Following the ResDepthwise Sep-
arable Conv Blocks, the resulting feature map is re-
shaped along the temporal axis and processed by a GRU
module, which captures temporal dependencies across
time frames. The GRU outputs are then aggregated us-
ing temporal average pooling, producing a fixed-length
representation of the entire acoustic scene.

• Feature Fusion and Classification: The outputs from
GRU and are concatenated and passed through a embed-
ding module, which is illustrated by the light orange com-
ponents in Figure 1, followed by a multi-layer perceptron
(MLP) and additional residual blocks (Res FC Block),
which is illustrated by the light orange components in
Figure 1.

B. Training Procedure
The training procedure largely follows the official baseline

setup of the APSIPA ASC 2025 Grand Challenge. The CAS
2023 development dataset [15]contains approximately 24.1
hours of audio data, including both labeled (approximately
4.8 hours) and unlabeled (approximately 19.3 hours) segments,
each accompanied by city and time metadata.

The model is trained in a three-stage semi-supervised learn-
ing pipeline:

1) Initial Training: The model is first trained using only
the labeled data to learn discriminative acoustic features.

2) Pseudo Labeling: The trained model is then used to
generate pseudo labels for the unlabeled portion of the
dataset.

3) Secondary Fine-tuning: Both the original labeled and
pseudo-labeled data are used to further fine-tune the
model and improve its generalization across different
acoustic conditions.
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While the overall training structure is consistent with the
challenge baseline, our method does not rely on any pretrained
model from external datasets (e.g., TAU2020 [17]). Instead,
we train the model from scratch, ensuring that no external
data is involved throughout the entire training pipeline. This
also demonstrates the model’s strong learning capacity under
limited supervision.

In all stages, the model incorporates city and time metadata
through learnable embeddings, enabling it to adapt to spatial-
temporal variability in real-world acoustic scenes.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

All experiments were conducted using the development
dataset provided in the APSIPA ASC 2025 Grand Challenge,
derived from the CAS 2023 dataset [15]. Our model Mo-
bileASCNet was implemented in PyTorch and trained from
scratch. The training followed the official semi-supervised
three-stage protocol described in Section III-B, with no ex-
ternal pretraining or distillation applied.

We train our model MobileASCNet for a maximum of 200
epochs with a batch size of 64, using the Adaptive Moment
Estimation (Adam) optimizer [18]. The initial learning rate is
set to 1e-4 and is updated using a Step Learning Rate (StepLR)
scheduler, which decays the learning rate by a factor of 0.9
every 2 epochs. To prevent overfitting and reduce training time,
we apply an early stopping strategy [19] with a patience of 10
epochs based on validation accuracy.

All models were evaluated on the development set, and
performance was measured using classification accuracy.

B. Performance Comparison

We compare our proposed MobileASCNet with the offi-
cial challenge baseline [20] which adopts a cross-task SE-
Trans architecture that combines Squeeze-and-Excitation and
Transformer encoders to capture channel-wise and temporal
dependencies in acoustic features. Table II shows the classi-
fication accuracy and parameters of different models on the
development set.

TABLE II
CLASSIFICATION ACCURACY AND MODEL SIZE COMPARISON ON THE

DEVELOPMENT SET.

Model Accuracy (%) Params

Baseline 96.0 0.44M
MobileASCNet 99.0 0.37M

As shown in Table II, our proposed MobileASCNet achieves
a classification accuracy of 99.0%, surpassing the official
baseline by 3.0%. Notably, this performance is achieved with-
out any external pretraining, highlighting the effectiveness
of our architecture when trained from scratch. In addition,
MobileASCNet uses fewer parameters, demonstrating a bet-
ter trade-off between accuracy and model complexity. The
observed performance gain can be attributed to the effec-
tive integration of depthwise separable convolutions, residual

connections, GRU-based temporal modeling, and contextual
embeddings.

V. CONCLUSIONS

In this report, we proposed MobileASCNet, a lightweight
yet effective CRNN based architecture for ASC under spatial-
temporal variability, as part of the APSIPA ASC 2025 Grand
Challenge. The model integrates depthwise separable con-
volutions and ResNet-inspired modules to efficiently capture
spatial and residual features, while a GRU models tempo-
ral dynamics. Additionally, contextual metadata such as city
and time information are incorporated through an embedding
module, further enhancing the scene recognition capability of
model. Experimental results on the official development set
demonstrate the effectiveness of our approach, achieving a
classification accuracy of 99.0%, significantly outperforming
the official baseline (96.0%) with fewer parameters without
external data pretrained and knowledge distillation.

REFERENCES

[1] D. Barchiesi, D. Giannoulis, D. Stowell, and M. D.
Plumbley, “Acoustic scene classification: A review of
features, classifiers and datasets,” IEEE Trans. Audio
Speech Lang. Process., vol. 23, no. 3, pp. 512–529,
2015.

[2] T. Mesaros, T. Heittola, and T. Virtanen, “Multi-device
dataset for acoustic scene classification and sound event
detection,” in Proc. DCASE Workshop, 2018.

[3] A. Mesaros, T. Heittola, and T. Virtanen, “Tut database
for acoustic scene classification and sound event detec-
tion,” in 2016 24th European signal processing confer-
ence (EUSIPCO), IEEE, 2016, pp. 1128–1132.

[4] A. Mesaros, R. Serizel, T. Heittola, T. Virtanen, and
M. D. Plumbley, “A decade of dcase: Achievements,
practices, evaluations and future challenges,” in ICASSP
2025-2025 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2025,
pp. 1–5.

[5] D. Wang and G. J. Brown, Computational auditory
scene analysis: Principles, algorithms, and applications.
Wiley-IEEE press, 2006.

[6] K. Koutini, H. Eghbal-Zadeh, D. Widmann, C. Mertes,
G. Schuller, and B. Schuller, “Efficient training of
audio transformers with patchout,” arXiv preprint
arXiv:2110.05069, 2021.

[7] T. Mesaros, T. Heittola, K. Drossos, and T. Virtanen,
“Tau urban acoustic scenes 2022 mobile: Three-device
dataset for acoustic scene classification,” DCASE2021
Challenge, Tech. Rep. 2021.

[8] Y. Tan, H. Ai, S. Li, and M. D. Plumbley, “Acoustic
scene classification across cities and devices via feature
disentanglement,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 32, pp. 1286–
1297, 2024.

3



[9] B. Murauer and B. Schuller, “Efficient acoustic scene
classification with cp-mobile,” DCASE2023 Challenge,
Tech. Rep. 2023.

[10] C. Schmid and et al., “Efficient teacher-student train-
ing for acoustic scene classification using passt,”
DCASE2023 Challenge, Tech. Rep. 2023.

[11] G. Hinton, O. Vinyals, and J. Dean, “Distilling
the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[12] H. Li, Z. Yang, M. Wang, et al., “Joint feature and
output distillation for low-complexity acoustic scene
classification,” arXiv preprint arXiv:2507.19557, 2025.

[13] K. Koutini, H. Eghbal-Zadeh, C. Mertes, G. Schuller, D.
Widmann, and B. Schuller, “Receptive-field-regularized
cnn variants for acoustic scene classification,” in Proc.
DCASE Workshop, 2021.

[14] E.-L. Tan, J. W. Yeow, S. Peksi, H. Li, Z. Yang,
and W.-S. Gan, “Sntl-ntu dcase25 submission: Acoustic
scene classification using CNN-GRU model without
knowledge distillation,” DCASE2025 Challenge, Tech.
Rep., May 2025.

[15] J. Bai, M. Wang, H. Liu, et al., Description on ieee icme
2024 grand challenge: Semi-supervised acoustic scene
classification under domain shift, 2024. arXiv: 2402 .
02694 [eess.AS].

[16] APSIPA ASC 2025 Grand Challenge Organizers, Ap-
sipa asc 2025 grand challenge, https : / / ascchallenge .
xshengyun.com/2025/index.html, Accessed: 2025-08-
07, 2025.

[17] H. Toni, M. Annamaria, and V. Tuomas, “Tau urban
acoustic scenes 2020 mobile development dataset [data
set],” Zenodo, 2020.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[19] L. Prechelt, “Early stopping-but when?” In Neural Net-
works: Tricks of the trade, Springer, 2002, pp. 55–69.

[20] J. Bai, J. Chen, M. Wang, M. S. Ayub, and Q. Yan,
“A squeeze-and-excitation and transformer-based cross-
task model for environmental sound recognition,” IEEE
Transactions on Cognitive and Developmental Systems,
vol. 15, no. 3, pp. 1501–1513, 2023.

4


